1,748 research outputs found

    Traffic engineering in ambient networks: challenges and approaches

    Get PDF
    The focus of this paper is on traffic engineering in ambient networks. We describe and categorize different alternatives for making the routing more adaptive to the current traffic situation and discuss the challenges that ambient networks pose on traffic engineering methods. One of the main objectives of traffic engineering is to avoid congestion by controlling and optimising the routing function, or in short, to put the traffic where the capacity is. The main challenge for traffic engineering in ambient networks is to cope with the dynamics of both topology and traffic demands. Mechanisms are needed that can handle traffic load dynamics in scenarios with sudden changes in traffic demand and dynamically distribute traffic to benefit from available resources. Trade-offs between optimality, stability and signaling overhead that are important for traffic engineering methods in the fixed Internet becomes even more critical in a dynamic ambient environment

    Cautious Weight Tuning for Link State Routing Protocols

    Get PDF
    Link state routing protocols are widely used for intradomain routing in the Internet. These protocols are simple to administer and automatically update paths between sources and destinations when the topology changes. However, finding link weights that optimize network performance for a given traffic scenario is computationally hard. The situation is even more complex when the traffic is uncertain or time-varying. We present an efficient heuristic for finding link settings that give uniformly good performance also under large changes in the traffic. The heuristic combines efficient search techniques with a novel objective function. The objective function combines network performance with a cost of deviating from desirable features of robust link weight settings. Furthermore, we discuss why link weight optimization is insensitive to errors in estimated traffic data from link load measurements. We assess performance of our method using traffic data from an operational IP backbone

    Traffic matrix estimation on a large IP backbone: a comparison on real data

    Get PDF
    This paper considers the problem of estimating the point-to-point traffic matrix in an operational IP backbone. Contrary to previous studies, that have used a partial traffic matrix or demands estimated from aggregated Netflow traces, we use a unique data set of complete traffic matrices from a global IP network measured over five-minute intervals. This allows us to do an accurate data analysis on the time-scale of typical link-load measurements and enables us to make a balanced evaluation of different traffic matrix estimation techniques. We describe the data collection infrastructure, present spatial and temporal demand distributions, investigate the stability of fan-out factors, and analyze the mean-variance relationships between demands. We perform a critical evaluation of existing and novel methods for traffic matrix estimation, including recursive fanout estimation, worst-case bounds, regularized estimation techniques, and methods that rely on mean-variance relationships. We discuss the weaknesses and strengths of the various methods, and highlight differences in the results for the European and American subnetworks

    Towards Robust Traffic Engineering in IP Networks

    Get PDF
    To deliver a reliable communication service it is essential for the network operator to manage how traffic flows in the network. The paths taken by the traffic is controlled by the routing function. Traditional ways of tuning routing in IP networks are designed to be simple to manage and are not designed to adapt to the traffic situation in the network. This can lead to congestion in parts of the network while other parts of the network is far from fully utilized. In this thesis we explore issues related to optimization of the routing function to balance load in the network. We investigate methods for efficient derivation of the traffic situation using link count measurements. The advantage of using link counts is that they are easily obtained and yield a very limited amount of data. We evaluate and show that estimation based on link counts give the operator a fast and accurate description of the traffic demands. For the evaluation we have access to a unique data set of complete traffic demands from an operational IP backbone. Furthermore, we evaluate performance of search heuristics to set weights in link-state routing protocols. For the evaluation we have access to complete traffic data from a Tier-1 IP network. Our findings confirm previous studies who use partial traffic data or synthetic traffic data. We find that optimization using estimated traffic demands has little significance to the performance of the load balancing. Finally, we device an algorithm that finds a routing setting that is robust to shifts in traffic patterns due to changes in the interdomain routing. A set of worst case scenarios caused by the interdomain routing changes is identified and used to solve a robust routing problem. The evaluation indicates that performance of the robust routing is close to optimal for a wide variety of traffic scenarios. The main contribution of this thesis is that we demonstrate that it is possible to estimate the traffic matrix with good accuracy and to develop methods that optimize the routing settings to give strong and robust network performance. Only minor changes might be necessary in order to implement our algorithms in existing networks

    Aspects of proactive traffic engineering in IP networks

    Get PDF
    To deliver a reliable communication service over the Internet it is essential for the network operator to manage the traffic situation in the network. The traffic situation is controlled by the routing function which determines what path traffic follows from source to destination. Current practices for setting routing parameters in IP networks are designed to be simple to manage. This can lead to congestion in parts of the network while other parts of the network are far from fully utilized. In this thesis we explore issues related to optimization of the routing function to balance load in the network and efficiently deliver a reliable communication service to the users. The optimization takes into account not only the traffic situation under normal operational conditions, but also traffic situations that appear under a wide variety of circumstances deviating from the nominal case. In order to balance load in the network knowledge of the traffic situations is needed. Consequently, in this thesis we investigate methods for efficient derivation of the traffic situation. The derivation is based on estimation of traffic demands from link load measurements. The advantage of using link load measurements is that they are easily obtained and consist of a limited amount of data that need to be processed. We evaluate and demonstrate how estimation based on link counts gives the operator a fast and accurate description of the traffic demands. For the evaluation we have access to a unique data set of complete traffic demands from an operational IP backbone. However, to honor service level agreements at all times the variability of the traffic needs to be accounted for in the load balancing. In addition, optimization techniques are often sensitive to errors and variations in input data. Hence, when an optimized routing setting is subjected to real traffic demands in the network, performance often deviate from what can be anticipated from the optimization. Thus, we identify and model different traffic uncertainties and describe how the routing setting can be optimized, not only for a nominal case, but for a wide range of different traffic situations that might appear in the network. Our results can be applied in MPLS enabled networks as well as in networks using link state routing protocols such as the widely used OSPF and IS-IS protocols. Only minor changes may be needed in current networks to implement our algorithms. The contributions of this thesis is that we: demonstrate that it is possible to estimate the traffic matrix with acceptable precision, and we develop methods and models for common traffic uncertainties to account for these uncertainties in the optimization of the routing configuration. In addition, we identify important properties in the structure of the traffic to successfully balance uncertain and varying traffic demands

    Beregningsprogram for pipesupport

    Get PDF
    Det er i denne oppgaven blitt laget et beregningsprogram for dimensjonering av pipesupports. Programmet tar for seg en firkantprofil som er festet til en plate, der bolter blir utsatt for skjÌr-, strekk- og momentbelastninger. Det er ogsü sett pü sveisen som er mellom platen og supportprofilen som holder oppe røret. Programmet er skrevet i Mathcad, som er et dataprogram som kan utføre büde enkle og avanserte kalkulasjoner. Det er ogsü tegnet og lagt inn enkle modeller i Inventor og ANSYS. Programmet er laget brukervennlig, for en rask innføring i beregning av pipesupports. Rapporten beskriver utgangspunktet for beregningene som er gjort, programmene som er brukt, og tanker rundt. Kapasitetsberegninger av forbindelser er blitt gjort i henhold til retningslinjene gitt i NS-EN 1993-1-8:2005+NA:2009 (Eurokode 3). Dette formelverket skal sikre at forbindelsen har nødvendige kapasiteter. Eurokodene er etter 1. april 2010 gjeldende regelverk for konstruksjoner i Nordsjøen. Tidligere var det de nasjonale standardene som var gjeldende

    Characterization of Prejunctional Muscarinic Receptors: Effects on the Release of VIP and Functional Responses and Receptor Expression in the Ovine Submandibular Gland

    Get PDF
    In the in vivo experiments on anaesthetized sheep, it was presently examined whether muscarinic receptor antagonists with diverse selectivity affect the release of VIP in response to electrical stimulation of the parasympathetic chorda tympanic nerve differently, and if the changes in the release could be associated to altered secretory and vasodilator responses. The location of the muscarinic receptor subtypes was examined also. In the experiments, blood was collected out of the submandibular venous drainage before and during electrical stimulation of chorda tympani nerve in the absence and presence either of pirenzepine or methoctramine. While metchoctramine increased the output of protein, pirenzepine inhibited flow of saliva and increased protein output, vasodilatation, and VIP output. In morphological examinations, the inhibitory muscarinic M4 receptor occurred interacinarily in the gland. It is concluded that prejunctional muscarinic receptors, most likely of the M4 subtype, exert inhibitory modulation of the parasympathetic release of VIP in the ovine submandibular gland
    • …
    corecore